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Module – 3 
 

PROCESS SYNCHRONIZTION 
 

 A cooperating process is one that can affect or be affected 

by other processes executing in the system.  

 Cooperating processes can either directly share the address 

space (that is, both code and data) or be allowed to share 

data through files or messages. 

 One process may only partially complete execution before 

another process is scheduled.  

 A process may be interrupted at any point in its instruction 

stream, and the processor may be assigned to execute 

instructions of another process. 

 As different processes update the same data concurrently, 

we would arrive at an incorrect state because we allow 

many processes to manipulate the same variable 

concurrently.  

 A situation where several processes access and manipulate 

the same data concurrently and the outcome of the 

execution depends on the particular order in which the 

access takes place, is called a race condition.  

 Eg: Consider a scenario in which husband deposits and 

wife withdraws from the same account concurrently 
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P1:  

(Husband deposits 1000/-)  

1. Read balance; 

2. balance=balance + 1000; 

 

P2:  

(Wife withdraws 400/-) 

A. Read balance; 

B. balance = balance – 400;  

 

 Assume that the initial balance is 5000.  

 Interleaved execution may result either new balance as 

4600/- (1, A, 2, B) or 6000/- (A, 1, B, 2). But sequential 

execution, in P1, P2 order or P2, P1 order gives the correct 

answer. 

 To guard against the race condition, we need to ensure that 

only one process at a time can be manipulating the shared 

variable.  

 To make such a guarantee, we require that the processes be 

synchronized in some way. 
 

 

THE CRITICAL SECTION PROBLEM 
 

 Consider a system consisting of n processes. Each process 

has a segment of code, called a critical section, in which 

the process may be changing common variables, updating 

a table, writing a file, and so on.  

 When one process is executing in its critical section, no 

other process is allowed to execute in its critical section.  

 That is, no two processes are executing in their critical 

sections at the same time.  
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 The critical-section problem is to design a protocol that 

the processes can use to cooperate. Each process must 

request permission to enter its critical section.  

 The section of code implementing this request is the entry 

section. The critical section may be followed by an exit 

section. The remaining code is the remainder section.  

 

 The entry section and exit section are enclosed in boxes to 

highlight the important segments of code. 

 A solution to the critical-section problem must satisfy the 

following three requirements: 

1. Mutual exclusion. If process Pi is executing in its critical 

section, then no other processes can be executing in their 

critical sections. 

2. Progress. If no process is executing in its critical section 

and some processes wish to enter their critical sections, 

then only those processes that are not executing in their 

remainder sections can participate in deciding which will 
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enter its critical section next, and this selection cannot be 

postponed indefinitely. 

3. Bounded waiting. There exists a bound, or limit, on the 

number of times that other processes are allowed to enter 

their critical sections after a process has made a request to 

enter its critical section and before that request is granted. 
 

Race conditions in Kernel processes 
 

 Consider as an example a kernel data structure that 

maintains a list of all open files in the system.  

 This list must be modified when a new file is opened or 

closed. If two processes were to open files simultaneously, 

the separate updates to this list could result in a race 

condition. 

 Other kernel data structures that are prone to possible race 

conditions include structures for maintaining memory 

allocation, for maintaining process lists, and for interrupt 

handling. 

 Two general approaches are used to handle critical sections 

in OS: (1) preemptive kernels and (2) nonpreemptive 

kernels.  

 A preemptive kernel allows a process to be preempted 

while it is running in kernel mode.  

 A nonpreemptive kernel does not allow a process running 

in kernel mode to be pre-empted 
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 A nonpreemptive kernel is essentially free from race 

conditions on kernel data structures, as only one process is 

active in the kernel at a time. 

 But we cannot say the same about preemptive kernels, so 

they must be carefully designed to ensure that shared 

kernel data are free from race conditions. 

 However, preemptive kernel is more suitable for real-time 

programming, as it will allow a real-time process to 

preempt a process currently running in the kernel. 

 

PETERSON’S SOLUTION 
 

 It is a classic software-based solution to the critical-section 

problem  

 Because of the way modern computer architectures 

perform basic machine-language instructions, there are no 

guarantees that Peterson’s solution will work correctly on 

such architectures.  

 But it provides a good algorithmic description of solving 

the critical-section problem 

 Peterson’s solution is restricted to two processes that 

alternate execution between their critical sections and 

remainder sections.  

 The processes are numbered Pi and Pj 

 Peterson’s solution requires the two processes to share two 

data items: 
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int turn; 

boolean flag[2]; 

 The variable turn indicates whose turn it is to enter its 

critical section. That is, if turn == i, then process Pi is 

allowed to execute in its critical section.  If turn == j, then 

process Pi is allowed to execute in its critical section 

 The flag array is used to indicate if a process is ready to 

enter its critical section. 

 For example, if flag[i] is true, this value indicates that Pi is 

ready to enter its critical section. If flag[i]==false, Pi is not 

ready. 

 Its algorithm is described as follows 
 

 

 To enter the critical section, process Pi first sets flag[i] to 

be true and then sets turn to the value j, thereby asserting 

that if the other process wishes to enter the critical section, 

it can do so.  
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 If both processes try to enter at the same time, turn will be 

set to both i and j at roughly the same time.  

 Only one of these assignments will last; the other will 

occur but will be overwritten immediately. 

 The eventual value of turn determines which of the two 

processes is allowed to enter its critical section first. 

 We now prove that this solution is correct. We need to 

show that all the 3 requirements have been satisfied 

1. Mutual exclusion is preserved. 

 Pi enters in critical section if either flag[j]==false or 

turn ==i.  

 If both processes are ready, then flag[i] and flag[j] 

will be true. 

 So value of the shared variable ‘turn’ will decide 

 Since it is a single variable, it can have only one 

value at a time. Either i or j 

 If turn==i, Pi will enter into critical section and Pj 

has to wait 

 Otherwise, if turn==j, Pj will enter into critical 

section and Pi has to wait 

 So only one process is executing critical section at a 

time. Hence mutual exclusion is ensured 

2. The progress requirement is satisfied. 

 If Pj is not ready to enter the critical section, then 

flag[j] == false, and Pi can enter its critical section. 

 If Pi is not ready to enter the critical section, then 

flag[i] == false, and Pj can enter its critical section. 
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 If both processes are ready, then flag[i] and flag[j] will 

be true. 

 So value of the shared variable ‘turn’ will decide 

 Since it is a single variable, it can have only one value 

at a time. Either i or j 

 If turn==i, Pi will continue, otherwise Pj 

 So anyone process will enter into critical section. 

Hence progress is ensured 

3. The bounded-waiting requirement is met. 

 If the turn is for Pi and Pj is waiting, after executing 

the critical section, Pi sets flag[i]=false. At that time Pj 

can exit from the while loop and enter into critical 

section.  

 Similar in case of Pj also. So a ready process enter in 

critical section after at most one execution by the 

another process 

 Hence bounded waiting is ensured 

 Since all the three requirements have been satisfied, it is 

proved that Peterson’s solution is a valid solution for the 

critical section problem.  


