
D e p t o f C S E , M B I T S Page 1

Module – 3

PROCESS SYNCHRONIZTION

 A cooperating process is one that can affect or be affected

by other processes executing in the system.

 Cooperating processes can either directly share the address

space (that is, both code and data) or be allowed to share

data through files or messages.

 One process may only partially complete execution before

another process is scheduled.

 A process may be interrupted at any point in its instruction

stream, and the processor may be assigned to execute

instructions of another process.

 As different processes update the same data concurrently,

we would arrive at an incorrect state because we allow

many processes to manipulate the same variable

concurrently.

 A situation where several processes access and manipulate

the same data concurrently and the outcome of the

execution depends on the particular order in which the

access takes place, is called a race condition.

 Eg: Consider a scenario in which husband deposits and

wife withdraws from the same account concurrently

D e p t o f C S E , M B I T S Page 2

P1:

(Husband deposits 1000/-)

1. Read balance;

2. balance=balance + 1000;

P2:

(Wife withdraws 400/-)

A. Read balance;

B. balance = balance – 400;

 Assume that the initial balance is 5000.

 Interleaved execution may result either new balance as

4600/- (1, A, 2, B) or 6000/- (A, 1, B, 2). But sequential

execution, in P1, P2 order or P2, P1 order gives the correct

answer.

 To guard against the race condition, we need to ensure that

only one process at a time can be manipulating the shared

variable.

 To make such a guarantee, we require that the processes be

synchronized in some way.

THE CRITICAL SECTION PROBLEM

 Consider a system consisting of n processes. Each process

has a segment of code, called a critical section, in which

the process may be changing common variables, updating

a table, writing a file, and so on.

 When one process is executing in its critical section, no

other process is allowed to execute in its critical section.

 That is, no two processes are executing in their critical

sections at the same time.

D e p t o f C S E , M B I T S Page 3

 The critical-section problem is to design a protocol that

the processes can use to cooperate. Each process must

request permission to enter its critical section.

 The section of code implementing this request is the entry

section. The critical section may be followed by an exit

section. The remaining code is the remainder section.

 The entry section and exit section are enclosed in boxes to

highlight the important segments of code.

 A solution to the critical-section problem must satisfy the

following three requirements:

1. Mutual exclusion. If process Pi is executing in its critical

section, then no other processes can be executing in their

critical sections.

2. Progress. If no process is executing in its critical section

and some processes wish to enter their critical sections,

then only those processes that are not executing in their

remainder sections can participate in deciding which will

D e p t o f C S E , M B I T S Page 4

enter its critical section next, and this selection cannot be

postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the

number of times that other processes are allowed to enter

their critical sections after a process has made a request to

enter its critical section and before that request is granted.

Race conditions in Kernel processes

 Consider as an example a kernel data structure that

maintains a list of all open files in the system.

 This list must be modified when a new file is opened or

closed. If two processes were to open files simultaneously,

the separate updates to this list could result in a race

condition.

 Other kernel data structures that are prone to possible race

conditions include structures for maintaining memory

allocation, for maintaining process lists, and for interrupt

handling.

 Two general approaches are used to handle critical sections

in OS: (1) preemptive kernels and (2) nonpreemptive

kernels.

 A preemptive kernel allows a process to be preempted

while it is running in kernel mode.

 A nonpreemptive kernel does not allow a process running

in kernel mode to be pre-empted

D e p t o f C S E , M B I T S Page 5

 A nonpreemptive kernel is essentially free from race

conditions on kernel data structures, as only one process is

active in the kernel at a time.

 But we cannot say the same about preemptive kernels, so

they must be carefully designed to ensure that shared

kernel data are free from race conditions.

 However, preemptive kernel is more suitable for real-time

programming, as it will allow a real-time process to

preempt a process currently running in the kernel.

PETERSON’S SOLUTION

 It is a classic software-based solution to the critical-section

problem

 Because of the way modern computer architectures

perform basic machine-language instructions, there are no

guarantees that Peterson’s solution will work correctly on

such architectures.

 But it provides a good algorithmic description of solving

the critical-section problem

 Peterson’s solution is restricted to two processes that

alternate execution between their critical sections and

remainder sections.

 The processes are numbered Pi and Pj

 Peterson’s solution requires the two processes to share two

data items:

D e p t o f C S E , M B I T S Page 6

int turn;

boolean flag[2];

 The variable turn indicates whose turn it is to enter its

critical section. That is, if turn == i, then process Pi is

allowed to execute in its critical section. If turn == j, then

process Pi is allowed to execute in its critical section

 The flag array is used to indicate if a process is ready to

enter its critical section.

 For example, if flag[i] is true, this value indicates that Pi is

ready to enter its critical section. If flag[i]==false, Pi is not

ready.

 Its algorithm is described as follows

 To enter the critical section, process Pi first sets flag[i] to

be true and then sets turn to the value j, thereby asserting

that if the other process wishes to enter the critical section,

it can do so.

D e p t o f C S E , M B I T S Page 7

 If both processes try to enter at the same time, turn will be

set to both i and j at roughly the same time.

 Only one of these assignments will last; the other will

occur but will be overwritten immediately.

 The eventual value of turn determines which of the two

processes is allowed to enter its critical section first.

 We now prove that this solution is correct. We need to

show that all the 3 requirements have been satisfied

1. Mutual exclusion is preserved.

 Pi enters in critical section if either flag[j]==false or

turn ==i.

 If both processes are ready, then flag[i] and flag[j]

will be true.

 So value of the shared variable ‘turn’ will decide

 Since it is a single variable, it can have only one

value at a time. Either i or j

 If turn==i, Pi will enter into critical section and Pj

has to wait

 Otherwise, if turn==j, Pj will enter into critical

section and Pi has to wait

 So only one process is executing critical section at a

time. Hence mutual exclusion is ensured

2. The progress requirement is satisfied.

 If Pj is not ready to enter the critical section, then

flag[j] == false, and Pi can enter its critical section.

 If Pi is not ready to enter the critical section, then

flag[i] == false, and Pj can enter its critical section.

D e p t o f C S E , M B I T S Page 8

 If both processes are ready, then flag[i] and flag[j] will

be true.

 So value of the shared variable ‘turn’ will decide

 Since it is a single variable, it can have only one value

at a time. Either i or j

 If turn==i, Pi will continue, otherwise Pj

 So anyone process will enter into critical section.

Hence progress is ensured

3. The bounded-waiting requirement is met.

 If the turn is for Pi and Pj is waiting, after executing

the critical section, Pi sets flag[i]=false. At that time Pj

can exit from the while loop and enter into critical

section.

 Similar in case of Pj also. So a ready process enter in

critical section after at most one execution by the

another process

 Hence bounded waiting is ensured

 Since all the three requirements have been satisfied, it is

proved that Peterson’s solution is a valid solution for the

critical section problem.

